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CHAPTER

ONE

WHAT IF FOR SOME REASON, YOU COULD UNLOCK 100% OF
YOUR PROCESSING POWER?

This Python package is simply, a collection of decorators that streamline the use of parallel processing with Python.
These decorators are powered by pathos and allow users to distribute operations over multiple CPU cores or vCPUs
(with cloud computing), significantly reducing the time required for computation.

Specifically, these decorators allow users to partition arrays into sectors and allocate operations for each sector over the
defined available cores. The package currently does not include support for GPUs for faster processing, thought it may
be a desired feature for the future.

Overall, this package is ideal for users working with large-scale tensor operations and seeking to optimize performance
through parallel processing.

Check out the Usage section for further information, including how to Installation the project.

Note: This project is under active development.
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Fig. 1: A single computer leveraging the multiprocessing capabilities of tensorscout to distribute tasks to 16 computers
and aggregate the results back to the original machine.
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CHAPTER

TWO

CONTENTS

2.1 Usage

2.1.1 Installation

It is recommended you use voxelmap through a virtual environment. You may follow the below simple protocol to
create the virtual environment, run it, and install the package there:

$ virtualenv venv
$ source venv/bin/activate
(.venv) $ pip install tensorscout

To exit the virtual environment, simply type deactivate. To access it at any other time again, enter with the above
source command.

2.1.2 Splitting Sampling Tasks Across Multiple Processors

When performing Monte Carlo sampling at a high number, it can significantly impact computing power. To address this,
we have developed the @multicarlo decorator, which allocates a specific number of iterations to a defined number
of available processors or cores. In our case, since we have a computer with 4 cores, we have set the num_cores to 4.
However, you can set it to as many cores as your computer or server may have available.

In this example, we compare the runtime performance of this multiprocessing decorator with the bare approach, which
uses a single core. We begin by importing all the required modules and defining a function that is used in both ap-
proaches to avoid redundancy.

import tensorscout as scout
import numpy as np
import matplotlib.pyplot as plt
from timethis import timethis

def make_histograms(data,results, title):
plt.figure()
plt.title(title+' N = 100,000')
plt.hist(data,bins = 7, alpha=0.5,label='data')
plt.hist(results,bins=600,alpha=0.5,color='magenta',label='data resampling')
plt.legend()

print()
data = np.random.normal(0, 1, 1000)
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The operations we run on both methodologies are random sampling operations which take random numbers from the
data distribution defined above, which is a distribution made from 1,000 samples from a Gaussian distribution with
a mean of 0 and standard deviation of 1. For both methods, we set the number of samples to 100,000, which is a
considerable amount. In the following code block, we apply the @multicarlo decorator to our random sampling
function monte_carlo_function and distribute the sampling iterations across four cores.

The timethis() function is used to record the run times of both methods and print them as a terminal output.

title = 'data resampling (with @multicarlo -- 4 cores)'
with timethis(title):
@scout.multicarlo(num_iters=100000, num_cores=4)
def monte_carlo_function(data, *args, **kwargs):

simulated_data = np.random.normal(np.mean(data), np.std(data))
return simulated_data

results = monte_carlo_function(data)
print('number unique results: {}/{}'.format(len(np.unique(results)),len(results)))

make_histograms(data,results,title)

print('...........................................................')

The following code block executes the same tasks as the previous block, but using a bare approach, meaning that it
uses a single core to perform all 100,000 random samples.

title='data resampling (bare)'
with timethis(title):

def monte_carlo_function_bare(data, *args, **kwargs):
simulated_data = np.random.normal(np.mean(data), np.std(data))
return simulated_data

results = [monte_carlo_function_bare(data) for i in range(100000)]
print('number unique results: {}/{}'.format(len(np.unique(results)),len(results)))
make_histograms(data,results,title)

#make plots for both approaches
plt.show()

The output for the previous three code blocks is displayed below.
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>>> [OUT]
number unique results: 100000/100000
data resampling (with @multicarlo -- 4 cores): 3.726 seconds
...........................................................
number unique results: 100000/100000
data resampling (bare): 6.478 seconds

We compared multiprocessing and naive methods for generating random numbers and tracked the number of unique
results. This showed that multiprocessing generated unique random numbers across different cores. Both methods
produced similar random sampling distributions, but the multiprocessing approach using @multicarlo with 4 cores
showed around a runtime improvement of 170% over the bare approach.

2.1.3 Campfire

Mapping and Storage of Large and Structurally-Diverse Results with Parallel Computing

Campfire is a powerful tool designed to enable multiprocessing of tests and simulations. It operates on the basis of
generating a Python dictionary as output for each simulation that is run. These dictionaries contain the results of each
simulation and are split across multiple CPU cores for processing.

Once the simulations have completed, Campfire then collects the dictionaries from all of the simulations and rebuilds
them into a single, parent dictionary. This parent dictionary contains all of the results from the individual simulations
and is designed to make it easy for users to analyze and interpret the data generated by their simulations.

Campfire is a valuable tool for anyone working with complex simulations or large data sets, as it can greatly accelerate
the speed at which simulations are run and analyzed. Its use of Python dictionaries as output provides users with a high
degree of flexibility and adaptability to a wide range of different simulation and testing scenarios.

Campfire can be a more powerful decorator than Multicarlo because dictionaries can return several outputs and may
be accessed by their keys. The below example is from the Python tests section and shows how to return values from a
“simulation” stored in x y z keys.

def unique(key='x'): return len(np.unique(map[key]))

with timethis("Campfire dictionary"):
(continues on next page)
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(continued from previous page)

@scout.campfire(num_iters=400, num_cores=4)
def simulation(data):
for i in range(1000):

'the above 1,000 iters is to stress-test the campfire method against the␣
→˓bare (no multiproc) method (in the end, only the last samples from x y and z are␣
→˓returned)'

x = [np.random.normal(0, 1) for i in range(5)]
y = [np.random.normal(0, 1) for i in range(5)]
z = [np.random.normal(0, 1) for i in range(5)]

return {'x': x, 'y': y, 'z': z}

data = 'c'
map = simulation(data)
print('unique samples -- x: {}, y: {}, z: {}'.format(unique('x'),unique('y'),unique('z

→˓')) )

print('...................................................')

with timethis("bare dictionary"):

def simulation_bare(data, num_iters):
X,Y,Z = [],[],[]
for j in range(num_iters):

for i in range(1000):
x = [np.random.normal(0, 1) for i in range(5)]
y = [np.random.normal(0, 1) for i in range(5)]
z = [np.random.normal(0, 1) for i in range(5)]

X.extend(x), Y.extend(y), Z.extend(z)

(continues on next page)
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Fig. 1: Much like a campfire which brings people together and allow for sharing stories and experiences, this decorator
brings together the results of simulations across num_cores multiple processors and regroups them in a dictionary by
key.
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(continued from previous page)

return {'x': X, 'y': Y, 'z': Z}

data = 100
map_bare = simulation_bare(data, num_iters=400)
print('unique samples -- x: {}, y: {}, z: {}'.format(unique('x'),unique('y'),unique('z

→˓')) )

>>> [OUT]
unique samples -- x: 2000, y: 2000, z: 2000
campfire dictionary: 3.013 seconds
...................................................
unique samples -- x: 2000, y: 2000, z: 2000
bare dictionary: 5.421 seconds

Notice how much additional scripting is needed to re-organize the data with simulations on a bare (no Campfire)
dictionary. Below we compare the 2000 x,y,z entries graphically between the Campfire sampling and the naive bare
sampling from above.

Simulations with Campfire (left) and with a naive bare approach (right). The above were drawn with the voxelmap
draw method for coordinates from the voxelmap package

2.1.4 Cakerun: Parallel Computing on Split Matrices

The question of whether it’s faster to eat a cake alone or have 100 people cut a slice and eat their portions until it’s gone
highlights the main concept behind the cakerun decorator. Essentially, the decorator partitions an array into a specified
number of equally-sized sectors and performs the same task on all sectors in parallel.

In this example, we set the number of cores to 4 and compare the performance of using multiprocessing versus using
a single core. Before proceeding, we import all necessary modules and define the draw function which is used in both
approaches to avoid redundancy. Additionally, we define the initial matrix, which is a 252 x 252 matrix of 1s, that will
be operated on by both methodologies.

8 Chapter 2. Contents
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import tensorscout as scout
import numpy as np
import matplotlib.pyplot as plt
from timethis import timethis

num_iters = 40000

def draw(result):
plt.figure()
plt.title('{} -- $N_{{perforated}}$ = {}'.format(title, np.multiply(*result.shape) -␣

→˓np.count_nonzero(result)))
plt.imshow(result,cmap='bone')

matrix = np.ones((252,252))

plt.imshow(matrix,cmap='bone')
plt.title('initial canvas')

In this example, the initial matrix is composed entirely of 1s and will appear as a single color when drawn. The purpose
of this code is to apply an operation called “perforation” to the matrix. At each iteration, a random x-y coordinate is
selected and the value at that location is set to 0.

The first case demonstrates the use of the @cakerun decorator to split the matrix into sectors and apply the perforate
function to each sector. The former code block specifies 40,000 perforating iterations, which for the case of this aprroach
has them evenly distributed across the 4 sectors, resulting in 10,000 iterations per sector, ocurring simultaneously.

title = 'cakerun MP (4 cores)'
with timethis("{}".format(title)):

cores = 4
@scout.cakerun(num_cores=cores, L_sectors=2)
def perforate(sector):

(continues on next page)
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(continued from previous page)

for i in range(num_iters // cores):
cds = np.argwhere(sector!=0)
sector[tuple(cds[np.random.randint(cds.shape[0])])] = 0

return sector

result = perforate(matrix)
draw(result)

In the next code block, the perforating operation is applied for 40,000 iterations using a bare approach with a single
processor. Hence, there is no task split involved.

title = 'single core'
with timethis("{}".format(title)):

def perforate_bare(sector):
for i in range(num_iters):

cds = np.argwhere(sector!=0)
sector[tuple(cds[np.random.randint(cds.shape[0])])] = 0

return sector

result = perforate_bare(matrix)
draw(result)

plt.show()

The following are graphical and runtime comparisons of both methods:

>>> [OUT]
cakerun MP (4 cores): 2.968 seconds

(continues on next page)

2.1. Usage 11



tensorscout, Release 2.3

(continued from previous page)

single core: 25.868 seconds

It is apparent that both approaches yield a similar outcome and have the same number of perforations. However, the
@cakerun decorated function, which uses four cores simultaneously, has a runtime that is 8-9 times faster than the bare
approach.

2.2 API Reference

2.2.1 Global Methods

At the time, tensorscout is a lean module composed of 3 decorators.

class tensorscout.cakerun(num_cores, L_sectors)
This decorator partitions an array into sectors and applies a given function to each sector in parallel. The result
of each computation is merged into a final output array.

Parameters

num_cores: int
Number of processors to use

L_sectors
[int] The length scale for the number of sectors [per column]. For non-square arrays, the number of sectors
per row gets adjusted as a function of this value

class tensorscout.campfire(num_iters, num_cores)
Much like a campfire which brings people together and allow for sharing stories and experiences, this deco-
rator brings together the results of simulations across num_cores multiple processors and regroups them in a
dictionary by key.

Parameters

num_cores: int
Number of processors to use

num_iters
[int] The number of iterations to perform for a specific model / Monte Carlo simulation.

class tensorscout.multicarlo(num_iters, num_cores)
This decorator performs a non-dynamic operation or task for a specified number of iterations num_iters and
distributes the tasks across a requested number of available processors num_cores.
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Parameters

num_cores: int
Number of processors to use

num_iters
[int] The number of iterations to perform for a specific model / Monte Carlo simulation.

2.2. API Reference 13
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